VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (I.T.) III Year I-Semester Supplementary Examinations, May/June-2017

Theory of Automata
Time: 3 hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20 \mathrm{Marks}$)

1. Design a DFA for the following Language $L=\{x 01 y \mid x$ and y are any string of 0 's and 1 's \}
2. Construct a R.E for the set of the strings that consists of alternate 0 's and 1 's.
3. Prove that $\mathrm{L}=\left\{\mathrm{ww} \mid \mathrm{w}\right.$ in $\left.(\mathrm{a}+\mathrm{b})^{*}\right\}$ is not regular.
4. Generate CFG for the following Language $L=\left\{0^{i} 1^{j} 0^{k} \mid j>i+k\right\}$
5. Define Greibach Normal Form.
6. Construct PDA for the following language $L=\left\{0^{n} 1^{2 n} \mid n \geq 1\right\}$
7. What are the special features of a TM?
8. Define Non-deterministic TM.
9. Represent the relation among P, NP, NP- Hard and NP- Complete in Venn diagram.
10. Define satisfiability.

Part-B $(5 \times 10=50$ Marks $)$
(All bits carry equal marks)
11. a) Differentiate NFA and DFA. Let $\mathrm{r}=1(1+0)^{*}, \mathrm{~s}=11^{*} 0$ and $\mathrm{t}=1^{*} 0$ be three regular expressions. Find the relationship between $L(r), L(s)$ and $L(t)$.
b) Construct NFA without ε for a given NFA with ε where q 0 and q 2 are the initial and final states respectively.

	a	b	c	ε
q_{0}	q_{0}	Φ	Φ	q_{1}
q_{1}	Φ	q_{1}	Φ	q_{2}
q_{2}	Φ	Φ	q_{2}	Φ

12. a) Define CNF. Describe the procedure for converting the given grammar to CNF.
b) Derive the CFG for the following Finite Automaton.

13. a) Design a PDA that accepts $L=\left\{w c w^{R} \mid w \in(a+b)^{*}\right\}$
b) Find PDA that accept the CFG $S \rightarrow X a a X, X \rightarrow a X|b X| \varepsilon$
14. a) Discuss about restricted TM's.
b) Design a $T M$ for $L=\left\{a^{n} b^{n} \mid n>=1\right\}$
15. a) What is post correspondence problem(pcp). Find whether the lists $M=(a b$, bab, bbaaa) and $\mathrm{N}=(\mathrm{a}, \mathrm{ba}, \mathrm{bab})$ have a Post Correspondence Solution.
b) Define P, NP, NP-Hard and NP-complete classification of problem with an example for each.
16. a) Construct a minimum state finite automaton equivalent to the given automaton, whose transition table is given below. Here q_{0} is an initial state and q_{6} is a final state.

State	a	b
q_{0}	q_{0}	q_{3}
q_{1}	q_{2}	q_{5}
q_{2}	q_{3}	q_{4}
q_{3}	q_{0}	q_{5}
q_{4}	q_{0}	q_{6}

b) Convert the following CFG in to equivalent grammar without ε - Productions $\mathrm{S} \rightarrow \mathrm{aAB}|\mathrm{BC}, \mathrm{A} \rightarrow \mathrm{bB}| \mathrm{b}|\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{c} C| \varepsilon$
17. Write short notes on any two of the following:
a) Pumping lemma for CFL.
b) Design of TM.
c) Church-Turing thesis.

