Time: 3 hours

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (I.T.) III Year I-Semester Supplementary Examinations, May/June-2017

Theory of Automata

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Design a DFA for the following Language $L = \{x01y \mid x \text{ and } y \text{ are any string of } 0$'s and 1's}
- 2. Construct a R.E for the set of the strings that consists of alternate 0's and 1's.
- 3. Prove that $L = \{ww | w \text{ in } (a+b)^*\}$ is not regular.
- 4. Generate CFG for the following Language $L = \{0^{i} 1^{j} 0^{k} | j > i+k\}$
- 5. Define Greibach Normal Form.
- 6. Construct PDA for the following language $L = \{0^n \ 1^{2n} | n \ge 1\}$
- 7. What are the special features of a TM?
- 8. Define Non-deterministic TM.
- 9. Represent the relation among P, NP, NP- Hard and NP- Complete in Venn diagram.
- 10. Define satisfiability.

Part-B (5 × 10 = 50 Marks) (All bits carry equal marks)

- 11. a) Differentiate NFA and DFA. Let $r = 1(1+0)^*$, $s = 11^*0$ and $t = 1^*0$ be three regular expressions. Find the relationship between L(r), L(s) and L(t).
 - b) Construct NFA without ε for a given NFA with ε where q0 and q2 are the initial and final states respectively.

	a	b	С	3
qo	qo	Φ	Φ	q 1
qı	Φ	q 1	Φ	q ₂
q2	Φ	Φ	q ₂	Φ

- 12. a) Define CNF. Describe the procedure for converting the given grammar to CNF.
 - b) Derive the CFG for the following Finite Automaton.

- 13. a) Design a PDA that accepts $L = \{wcw^R | w \in (a+b)^*\}$
 - b) Find PDA that accept the CFG $S \rightarrow XaaX, X \rightarrow aX | bX | \varepsilon$

- ::2::
- 14. a) Discuss about restricted TM's.
 - b) Design a TM for $L = \{ a^n b^n | n \ge 1 \}$
- 15. a) What is post correspondence problem(pcp). Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a Post Correspondence Solution.
 - b) Define P, NP, NP-Hard and NP-complete classification of problem with an example for each.
- 16. a) Construct a minimum state finite automaton equivalent to the given automaton, whose transition table is given below. Here q₀ is an initial state and q₆ is a final state.

State	a	b
qo	q 0	q ₃
qı	q2	q 5
q ₂	q ₃	q 4
q ₃	qo	q 5
q 4	qo	q 6

b) Convert the following CFG in to equivalent grammar without ε – Productions $S \rightarrow aAB | BC, A \rightarrow bB | b | A, B \rightarrow C, C \rightarrow cC | \varepsilon$

17. Write short notes on any two of the following:

- a) Pumping lemma for CFL.
- b) Design of TM.
- c) Church-Turing thesis.